123 research outputs found

    Ontology-based modeling of control logic in building automation systems

    Get PDF
    The control logic implemented in building automation systems (BAS) has a significant impact on the overall energy demand of the building. However, information on the control logic, if documented, is often concealed from further data integration and reuse in heterogeneous information silos using disparate data formats. In particular, existing data formats and information models offer limited support to describe control logic explicitly. Ontology-based modeling of the control logic of BAS can potentially result in a versatile source of information for information-driven processes to further increase the performance of technical equipment in a building. Therefore, we present a novel information model, CTRLont, which allows to formally specify the domain of control logic in BAS. We demonstrate the usefulness of the novel information model by using it as a knowledge base for automating rule-based verification of designed control logic in BAS. We successfully apply the methodology to a simple control of an air handling unit and indicate a number of future steps

    Cytomegalovirus-specific T-cell responses and viral replication in kidney transplant recipients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cytomegalovirus (CMV) seronegative recipients (R-) of kidney transplants (KT) from seropositive donors (D+) are at higher risk for CMV replication and ganciclovir(GCV)-resistance than CMV R(+). We hypothesized that low CMV-specific T-cell responses are associated with increased risk of CMV replication in R(+)-patients with D(+) or D(-) donors.</p> <p>Methods</p> <p>We prospectively evaluated 73 consecutive KT-patients [48 R(+), 25 D(+)R(-)] undergoing routine testing for CMV replication as part of a preemptive strategy. We compared CMV-specific interferon-Îł (IFN-Îł) responses of CD4+CD3+ lymphocytes in peripheral blood mononuclear cells (PBMC) using three different antigen preparation (CMV-lysate, pp72- and pp65-overlapping peptide pools) using intracellular cytokine staining and flow cytometry.</p> <p>Results</p> <p>Median CD4+ and CD8+T-cell responses to CMV-lysate, pp72- and pp65-overlapping peptide pools were lower in D(+)R(-) than in R(+)patients or in non-immunosuppressed donors. Comparing subpopulations we found that CMV-lysate favored CD4+- over CD8+-responses, whereas the reverse was observed for pp72, while pp65-CD4+- and -CD8+-responses were similar. Concurrent CMV replication in R(+)-patients was associated with significantly lower T-cell responses (pp65 median CD4+ 0.00% vs. 0.03%, p = 0.001; CD8+ 0.01% vs. 0.03%; p = 0.033). Receiver operated curve analysis associated CMV-pp65 CD4+ responses of > 0.03% in R(+)-patients with absence of concurrent (p = 0.003) and future CMV replication in the following 8 weeks (p = 0.036). GCV-resistant CMV replication occurred in 3 R(+)-patients (6.3%) with pp65- CD4+ frequencies < 0.03% (p = 0.041).</p> <p>Conclusion</p> <p>The data suggest that pp65-specific CD4+ T-cells might be useful to identify R(+)-patients at increased risk of CMV replication. Provided further corroborating evidence, CMV-pp65 CD4+ responses above 0.03% in PBMCs of KT patients under stable immunosuppression are associated with lower risk of concurrent and future CMV replication during the following 8 weeks.</p

    Simulation-Based Evaluation and Optimization of Control Strategies in Buildings

    Get PDF
    Over the last several years, a great amount of research work has been focused on the development of model predictive control techniques for the indoor climate control of buildings, but, despite the promising results, this technology is still not adopted by the industry. One of the main reasons for this is the increased cost associated with the development and calibration (or identification) of mathematical models of special structure used for predicting future states of the building. We propose a methodology to overcome this obstacle by replacing these hand-engineered mathematical models with a thermal simulation model of the building developed using detailed thermal simulation engines such as EnergyPlus. As designing better controllers requires interacting with the simulation model, a central part of our methodology is the control improvement (or optimisation) module, facilitating two simulation-based control improvement methodologies: one based in multi-criteria decision analysis methods and the other based on state-space identification of dynamical systems using Gaussian process models and reinforcement learning. We evaluate the proposed methodology in a set of simulation-based experiments using the thermal simulation model of a real building located in Portugal. Our results indicate that the proposed methodology could be a viable alternative to model predictive control-based supervisory control in buildings.Research leading to these results has been partially supported by the Modelling Optimization of Energy Efficiency in Buildings for Urban Sustainability (MOEEBIUS) project. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 680517. Georgios Giannakis and Dimitrios Rovas gratefully acknowledge financial support from the European Commission H2020-EeB5-2015 project “Optimised Energy Efficient Design Platform for Refurbishment at District Level” under Contract #680676 (OptEEmAL). Georgios Kontes and Christopher Mutschler gratefully acknowledge financial support from the Federal Ministry of Education and Research of Germany in the framework of Machine Learning Forum (grant number 01IS17071). Georgios Kontes, Natalia Panagiotidou, Simone Steiger and Gunnar Gruen gratefully acknowledge use of the services and facilities of the Energie Campus Nürnberg. The APC was funded by MOEEBIUS project. This paper reflects only the authors’ views and the Commission is not responsible for any use that may be made of the information contained therein

    Defining activities in neurovascular microsurgery training : entrustable professional activities for vascular neurosurgery

    Get PDF
    Background Entrustable professional activities (EPAs) represent an assessment framework with an increased focus on competency-based assessment. Originally developed and adopted for undergraduate medical education, concerns over resident ability to practice effectively after graduation have led to its implementation in residency training but yet not in vascular neurosurgery. Subjective assessment of resident or fellow performance can be problematic, and thus, we aim to define core EPAs for neurosurgical vascular training. Methods We used a nominal group technique in a multistep interaction between a team of experienced neurovascular specialists and a medical educator to identify relevant EPAs. Panel members provided feedback on the EPAs until they reached consent. Results The process produced seven core procedural EPAs for vascular residency and fellowship training, non-complex aneurysm surgery, complex aneurysm surgery, bypass surgery, arteriovenous malformation resection, spinal dural fistula surgery, perioperative management, and clinical decision-making. Conclusion These seven EPAs for vascular neurosurgical training may support and guide the neurosurgical society in the development and implementation of EPAs as an evaluation tool and incorporate entrustment decisions in their training programs.Peer reviewe

    Ring1b-dependent epigenetic remodelling is an essential prerequisite for pancreatic carcinogenesis

    Get PDF
    BACKGROUND AND AIMS Besides well-defined genetic alterations, the dedifferentiation of mature acinar cells is an important prerequisite for pancreatic carcinogenesis. Acinar-specific genes controlling cell homeostasis are extensively downregulated during cancer development; however, the underlying mechanisms are poorly understood. Now, we devised a novel in vitro strategy to determine genome-wide dynamics in the epigenetic landscape in pancreatic carcinogenesis. DESIGN With our in vitro carcinogenic sequence, we performed global gene expression analysis and ChIP sequencing for the histone modifications H3K4me3, H3K27me3 and H2AK119ub. Followed by a comprehensive bioinformatic approach, we captured gene clusters with extensive epigenetic and transcriptional remodelling. Relevance of Ring1b-catalysed H2AK119ub in acinar cell reprogramming was studied in an inducible Ring1b knockout mouse model. CRISPR/Cas9-mediated Ring1b ablation as well as drug-induced Ring1b inhibition were functionally characterised in pancreatic cancer cells. RESULTS The epigenome is vigorously modified during pancreatic carcinogenesis, defining cellular identity. Particularly, regulatory acinar cell transcription factors are epigenetically silenced by the Ring1b-catalysed histone modification H2AK119ub in acinar-to-ductal metaplasia and pancreatic cancer cells. Ring1b knockout mice showed greatly impaired acinar cell dedifferentiation and pancreatic tumour formation due to a retained expression of acinar differentiation genes. Depletion or drug-induced inhibition of Ring1b promoted tumour cell reprogramming towards a less aggressive phenotype. CONCLUSIONS Our data provide substantial evidence that the epigenetic silencing of acinar cell fate genes is a mandatory event in the development and progression of pancreatic cancer. Targeting the epigenetic repressor Ring1b could offer new therapeutic options

    Glycemic Variability Promotes Both Local Invasion and Metastatic Colonization by Pancreatic Ductal Adenocarcinoma

    Get PDF
    Background & Aims: Although nearly half of pancreatic ductal adenocarcinoma (PDAC) patients have diabetes mellitus with episodes of hyperglycemia, its tumor microenvironment is hypoglycemic. Thus, it is crucial for PDAC cells to develop adaptive mechanisms dealing with oscillating glucose levels. So far, the biological impact of such glycemic variability on PDAC biology remains unknown. Methods: Murine PDAC cells were cultured in low- and high-glucose medium to investigate the molecular, biochemical, and metabolic influence of glycemic variability on tumor behavior. A set of in vivo functional assays including orthotopic implantation and portal and tail vein injection were used. Results were further confirmed on tissues from PDAC patients. Results: Glycemic variability has no significant effect on PDAC cell proliferation. Hypoglycemia is associated with local invasion and angiogenesis, whereas hyperglycemia promotes metastatic colonization. Increased metastatic colonization under hyperglycemia is due to increased expression of runt related transcription factor 3 (Runx3), which further activates expression of collagen, type VI, alpha 1 (Col6a1), forming a glycemic pro-metastatic pathway. Through epigenetic machinery, retinoic acid receptor beta (Rarb) expression fluctuates according to glycemic variability, acting as a critical sensor relaying the glycemic signal to Runx3/Col6a1. Moreover, the signal axis of Rarb/Runx3/Col6a1 is pharmaceutically accessible to a widely used antidiabetic substance, metformin, and Rar modulator. Finally, PDAC tissues from patients with diabetes show an increased expression of COL6A1. Conclusions: Glycemic variability promotes both local invasion and metastatic colonization of PDAC. A pro-metastatic signal axis Rarb/Runx3/Col6a1 whose activity is controlled by glycemic variability is identified. The therapeutic relevance of this pathway needs to be explored in PDAC patients, especially in those with diabetes

    Mutations and Deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Cascades Which Alter Therapy Response

    Get PDF
    The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Certain components of these pathways, RAS, NF1, BRAF, MEK1, DUSP5, PP2A, PIK3CA, PIK3R1, PIK3R4, PIK3R5, IRS4, AKT, NFKB1, MTOR, PTEN, TSC1, and TSC2 may also be activated/inactivated by mutations or epigenetic silencing. Upstream mutations in one signaling pathway or even in downstream components of the same pathway can alter the sensitivity of the cells to certain small molecule inhibitors. These pathways have profound effects on proliferative, apoptotic and differentiation pathways. Dysregulation of components of these cascades can contribute to: resistance to other pathway inhibitors, chemotherapeutic drug resistance, premature aging as well as other diseases. This review will first describe these pathways and discuss how genetic mutations and epigenetic alterations can result in resistance to various inhibitors
    • …
    corecore